Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Integrated Communications, Navigation and Surveillance Conference, ICNS ; 2023-April, 2023.
Article in English | Scopus | ID: covidwho-20239449

ABSTRACT

We recently concluded a four-year University Leadership Initiative (ULI) project sponsored by NASA, which investigated multiple aviation communications technology areas aimed at enhancing future aviation safety. These areas were dual-band air-ground communications for air traffic management, detection and interdiction of small drones, and high-capacity terrestrial airport communications networking. In this paper we report on flight test results of our dual-band radios. These radios were designed to use a spectrally efficient multi-carrier modulation, filterbank multicarrier (FBMC), which we had previously shown to improve resilience to high-power distance measurement equipment (DME) adjacent-channel interference, in comparison to existing orthogonal frequency division multiplexing (OFDM) schemes. In our NASA project, we designed the FBMC radios to extend performance even further, using the following techniques: (i) simultaneous dual-band transmission and reception;(ii) ground station (GS) spatial diversity;(iii) higher-order modulation for a factor of 5 capacity increase over QPSK;(iv) a Doppler-resilient option using a smaller number of subcarriers;and, (v) 5-MHz bandwidth C-band transmissions for an order of magnitude capacity increase over existing 500-kHz channel schemes. To our knowledge, these are novel achievements for civil aviation, and our flight test results attained a technology readiness level (TRL) of 5. In this paper we briefly describe the project history, in which we spent approximately one year working with Boeing to participate in one of their Eco-Demonstrator flight trials, and obtained special temporary authorizations to transmit in both the L-band and C-band, from the FAA, the FCC, and the DoD. When COVID-19 dispersed worldwide, Boeing was no longer able to support us, so we revised our plans and teamed with the South Carolina Civil Air Patrol (SC CAP) to conduct smaller-scale flight tests. This paper summarizes the radio designs and the novel features we employed, as well as analyses, computer simulations, and laboratory tests prior to terrestrial mobile testing, all of which culminated in our successful flight tests. We show example flight test results that serve as proof of concept for all the five aforementioned radio performance enhancements. Example results include signal-to-noise ratio and bit error ratio, diversity gains, and throughput gains through both higher-order modulation and wider bandwidth channels. We also report on some lessons learned, and some ideas for future advancement of our work. © 2023 IEEE.

2.
6th International Conference on Transportation Information and Safety, ICTIS 2021 ; : 1176-1182, 2021.
Article in English | Scopus | ID: covidwho-1948783

ABSTRACT

Fatigue leads to the decrease of the flight crew's alertness, which will seriously affect the flight safety. In order to avoid the risk of infection caused by the overnight stay abroad of the air crew during the Covid-19 epidemic, CAAC proposed an exemption method to release the flight time restriction of regulation by increasing the number of flight crew and setting up an independent rest area on international flights. Based on the alertness energy theory, this paper simulates the crew alertness of three international scheduled flights of China Southern Airlines, including Guangzhou - Amsterdam, Guangzhou - Los Angeles, and Guangzhou - Sydney, to compare the difference of crew alertness between '3 sets of flight crew, without overnight rest' in accordance with exemption condition, and '2 sets of flight crew, with overnight rest' in accordance with regulation condition. The simulation results show that for the Guangzhou - Amsterdam and Guangzhou - Los Angeles flights, the cockpit alertness under the exemption condition is similar to that under the regulation condition, and the fatigue risk is acceptable;for the 'Guangzhou-Sydney' flight, because the return flight under the exemption condition is always in the negative range of human rhythm, the alertness is lower than that under the regulation condition. © 2021 IEEE.

3.
40th IEEE/AIAA Digital Avionics Systems Conference, DASC 2021 ; 2021-October, 2021.
Article in English | Scopus | ID: covidwho-1642527

ABSTRACT

After COVID-19, a full recovery compared to the 2019 situation with a subsequent growth of global air traffic is expected for the next three to six years [1]. Regarding carbon dioxide emissions, Coronavirus lockdown helped the environment to bounce back, but this will be a temporary situation. It is important to continue investigating additional mitigation measurements to achieve long-term environmental benefits, especially after the recovery. At that point, the question of how to reduce aviation's impact on the climate change will certainly arise again, and will re-gain its importance for the world-wide community. Since no fundamental breakthroughs in CO reduction in aviation are expected in the near future, research should focus on several measures to sustainably reduce the environmental impact of aviation. The air traffic management can contribute to an overall reduction of emissions of greenhouse gases by optimizing traffic flows not only towards maximum airspace capacity and maximum efficiency, but also increasingly towards minimum environmental impact. A set of concept elements that were investigated in the frame of the European-Chinese project Greener Air Traffic Operations (GreAT) can already constitute simple and suitable means towards a greener air traffic management. One of these concept elements is the 'Lowest Impact of Deviation' principle: Whenever two flights need to deviate from their most fuel-efficient route, speed or altitude due to de-conflicting, this deviation should be done by the flight with the lowest fuel consumption, and consequently, with the lowest amount of emissions produced with this maneuver. This principle is currently neither reflected in air traffic control regulations, nor in common practices. In the frame of the work presented in this paper, this principle has been further investigated and analyzed with a fast-time simulation, which models a free route airspace environment under ideal conditions. The flights are generated according to a configurable traffic density. De-conflicting is done automatically either by following the standard right of way rules, which also often serve as a guiding principle for air traffic controllers;or by following the 'Lowest Impact of Deviation' principle. Based on EUROCONTROL's Base of Aircraft Data (BADA), the simulation estimates the fuel consumption for each flight as well as for the whole simulation, and consequently also the CO emissions, as a function of traffic density.This paper gives basic information about the principle itself, which is then further tailored down and applied to a free route airspace environment for en-route traffic. It briefly describes the used fast time simulation and illustrates the obtained results. This paper quantifies the theoretical benefit that can be achieved by applying the mentioned principle in the described way. When knowing the traffic density of real air traffic control sectors, the results can easily and directly be transferred to them. © 2021 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL